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I.  Introduction 

Many algorithms require the calculation of a sum 

n 
s = J] x  , n >3   , 

i=l 1 

where x.^x , ...,x  are numbers represented in floating point. In 

practice, an approximate sum § is computed with rounding errors. 

Wilkinson [1] shows that if the sum is accumulated in a single-precision 

accumulator (using floating binary arithmetic with t bits of precision 

and proper rounding), then 

n 
^ - s = E x n    , 

i=l   1 1 

where 

(l.2-t)n+l-r$1+Tir5(1+2-t)n+l-r (r = !,...,„)  . 

Thus the error bound is dependent on the order of summation.   This 

result has led to the well-known rule of thumb that it is usually best 

to add a list of numbers in order of increasing magnitude.    If one has 

a priori knowledge of the   x.    (e.g.,    ][] |x.»|  < 1 ) or i*' "the accumulation 

is performed with more precision (say double precision), then much smaller 

error bounds can be found.    However, as Wilkinson points out, "It should 

be emphasized that we still cannot guarantee that an accumulated sum ... 

has a low relative error." 

Large relative error in an accumulated sum is often the result of 

a phenomenon which Professor D.H. Lehmer calls catastrophic cancellation. 

This occurs when an intermediate partial sum is much larger in magnitude 

than the final sum.    Then one or more additions result in a loss of 



significant digits. The post-normalization step of a subsequent 

addition thus introduces zeros in place of significant digits. 

However, as Professor William Kahan has observed, this large cancellation 

is not the cause of the error — it merely reveals the error. That is, 

the real villain here is not the cancellation, but rather the large 

intermediate sums within a floating-point system of given precision. 

Perhaps "catastrophic loss of precision" would be a more appropriate 

name. Catastophic cancellation is fairly common with poorly designed 

algorithms; most good algorithms have built-in precautions which avoid 

(or usually avoid) thic phenomenon. 

Large relative errors can occur without catastrophic cancellation. 

This happens in large summations (n » 3) where the intermediate sums 

become much larger in magnitude than the individual addends, but not 

larger than the final sum. This sort of error can occur in numerical 

integration using a large number of intervals. Wolfe [2] proposed a 

technique for avoiding this type of error« It is described in the 

following section. 

In the remainder of this report, a modification of Wolfe's algorithm 

is presented, followed by a detailed error analysis. This algorithm has 

the advantage that the final sum is guaranteed to have a very small 

relative error. 

II. Extended Summation With Cascading Accumulators 

Wolfe [2] suggests a technique which is easily programmed and requires 

only a small number of additional storage locations. These extra locations, 

called cascading accumulators, are denoted by si, s2, ... . The separate 

accumulators hold sums that are in various intervals; for example. 



1.000 < c(sl) < 9-999 

10.00 < c(s2) < 99.99 

100.0   <   c(s3)   <   999-9 

where   c(sl)    denotes the contents of    si  .    The summing is done at 

the lowest level accumulator    (si)    until it is about to overflow. 

At that point it is added to the next accumulator    (s2)    and reset to 

zero.    Similarly,   if    s?.    is about to overflow,   it is added to    s3    and 

reset to zero,  and so on. 

By this technique the intermediate sums never become much larger 

than the addends.    However, catac-trophic cancellation can occur Just 

as before.    Wolfe does not discuss how to go about summing the accumulators 

at the end;    in an example he uses the order of increasing magnitude. 

For certain problems, this is a useful technique; however, there is no 

guarantee that the final result has a small relative error. 

III.    A Modification of Wolfe's Algorithm 

The following algorithm requires little if any more execution 

time than the algorithm of the last section, and nearly full- 

precision accuracy is achieved, provided exponent underflow or overflow 

do not occur.    Such exceptional conditions are nomally brought to the 

attention of the user by the system software and, if so, inaccurate 

results cannot go unnoticed.    As in Wolfe's algorithm, additional 

intermediate accumulators are used — typically fewer than 50. 

> 



The following discussion assumes the algorithm Is implemented 

on a machine using a floating-point number system   F   of base   ß 

(usually    ß    is    2, 8, 10 or 16)    with a t-dlgit mantissa.    The 

exponent    e    is assumed to lie in the range 

-m < e < M 

Thus each nonzero   xeF   has the normalized representation 

x =+ .d1d2...dt -ß
6    , (1) 

where    d1,...,d.    are integers satisfying 

1 < d1 < ß-1 , 

0 < di < ß-1 (i = 2,...,t)   . 

The number 0 belongs to F , and has the structure 

0 = .00...0 • ß"m . 

All floating-point addition is assumed to be normalized. The machine 

may do either proper rounding or truncation (chopping). 

To facilitate discussion, the function /ev (similar to that used 

by Miller [5]) is defined as follows: If xeF then fev(x) = e + m . 

fev is the biased exponent having the mnemonic "level". Note that lev 

is a function o:" the representation of a number and not the number 

itself. For example, suppose x is to be added to y , where |y| > |x|, 

and that x must be unnormalized during operand alignment. Suppose also 

that no nonzero digits are lost from the mantissa of x while it is being 



unnoxnallzed. If we denote the unnormalized representation of x by x > 

then x and x both represent the same real number exactly, but 

iev(50 > /ev(x) . 
n 

The algorithm for computing Y, x*    can now be described as 
i=l 

follows. There are two positive parameters, I and TJ : 

Assume there are T)+1 accumulators, the contents of which are 

denoted by a,a,...,a . 

1. Set each of the accumulators to zero. 

2. For each x. form aii^ a4 p'' * *' aia (^ > 1) >  where 

a.1+a.p+ ... + a. = x. and each a., has the property 

that the last I digits are 0 (i.e., d, .+. = d.. = ... = 

dt =0). 

3. Each a   is added to the k-th accmnulator, where k is 

determined by 

vk < lev(a. .) < vk+v-1 , 

(2) 
v = rCM+m+D/h + Dl 

where FI ~| denotes the smallest integer not less than £ . 

(Thus 

k = '«^(«0 TV, (5) 

in the sense of Algol 60.) 

k.      The accumulators are summed in decreasing order (i.e., 

TJ,T)-1, ...,0)   . 



The second step appears, at first sight, to be quite complicated. 

However, in practice it is easily done, especially on a machine with 

double-precision arithmetic. An illustration of this in Fortran for 

the IBM System/560 is contained in Section VI. 

The parameters I and t) are chosen so that the addition in step 3 

retains all the significant digits involved. That is, until step k,  there 

are no rounding errors. More insight into choosing I    and i]   will be 

given in the following section. Also, an important restriction on the 

magnitude of the product qn will be revealed. 

Step number k is certainly the most interesting step of the algorithm. 

If, instead, the accumulators are summed in increasing order (as one is 

tempted to do after reading Wilkinson [1]), catastrophic cance-ulation can 

occur. When this algorithm is incorporated in an innerproduct routine, it 

often happens that 

■v 0 

• 
• 
• 

Vi = 0 

\ 
= -B 

\-l = B 

V2 = 0 

^-3 = 0 

\.k = E1 

Vs = £2 



f 

where   fev(B) -/ev(e ) >t  .    Summing in increasing order will yield   0 . 

However, as D. Jordan pointed out in [h], summing the accumulators in 

decreasing order    (r],..,,0)    precludes the chance of this type of error. 

The remaining question is:    Does summing the accumulators in decreasing 

order lead to some other case where a large relative roundoff error can 

occur?   The answer to this question is no.    Proof of this assertion and 

a sharp bound on the roundoff error are given in the next section. 

IV.    Error Analysis 

Another convenient function is defined as follows:    Let   xeF   be an 

approximation of some real number   x    .    If   x = x     and   x   / 0 , then 

pad(x,x )    is defined to be the number of digits by which the mantissa 

of   x   can be shifted to the right before a significant digit is lost 

(i.e., before a non-zero digit is shifted out of the low-ordei" position). 

If   x / x    , then   pad(x,x )    is negative, and defined as follows: 

suppose   x   has the representation (1); if there exists a    £    such that 

£    can be represented as 

C = + .d^dg.. .^ • ß6"*       with   ij, / 0 ,    ^ / 0 

and   x+ £ = x     and   T    is finite, then   pad(x,x )    is defined to be   -T  . 
,     *■. 

Otherwise,    pad(x,x )    is defined as    • <&   .    For completeness, 

pad(0,0) = * .    For example, if   ß = 2   and   t = 6 ,    pad(-.101000 '2 »-5^)  = 3 . 

If   x = +.111111-2     and   y =+.111111*2   , and   ®   represents floating- 

point addition, and   pad(x®y,x + y) = -2   since  twe digits are lost during 

the floating-point addition.   When   pad(x,x )    is positive, the mantissa 

of   x   has a "padding" of zero digits at th* end. 



It follows that 

pad(x,x )  > 0   «   x = x   , 

pad(x,x ) < 0   «   x / x   , 

* # * 
pad(x,x )  > t   =»   pad(x,x )=oo   »   x=x   =0. 

In step 2 of the algorithm,  it is required that   pad(a. .,a .) > 1 > 0 , 

for all   i,j  . 

It is also expedient to define 

p(x,x )   = iev(x) + pad(x,x )     . (k) 

p(x,x )    is invariant with respect to operand alignment (un-normalization) 

and post-nonnalization of   x , provided no exponent underflow or overflow 

occurs. 

Lemma 1:    If   x    and   y   are two floating-point numbers and   ®   represents 

floating-point addition, then 

p(x®y,x  +y ) >min{p(x,x ),p(y,y )}    , 

provided no exponent underflow or overflow occurs. 

Proof;      Assume    lev(x) > lev(y)  .    Let    z    denote an accumulator, 

a floating-point number with a   t+2    digit mantissa and an 

overflow digit.    Set    z •- y   and,  if necessary, unnormalize    z 

so that   iev(z)  = lev(x)   .    The accumulator    z   can be treated 

as a floating-point number if one ignores the overflow digit and 

I 
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considers on.ly the first   t    digits of the mantissa.    In this 

way,    pad   is defined for    z  .    Let   w   denote another 

accumulator with the same structure as   z .    Set   w •- z+x . 

Prior to the post-nonnalization step in forming   w , 

iev(w) = lev(z) = iev(x)    and 

pad(w,x +y ) > rain{pad(z,y ),pad(x,x )}    , 

and equality occurs whenever the low-order digits of   x   and   y 

don't cancel.    From Equation (U)  and the fact that 

p(w,x  +y )    remains unchjmged dvtring the post-normalization 

step,  it follows that 

p(x®y,x +y )  = p(w,x   +y )  >min(p(z,y ),p(x,x )}     . 

*■ * 

Since    p(z,y )  = p(y,y )   , 

p(x®y,x  +y )  >min{p(x,x ),p(y,y )}    . 



Lemma 2;    In the notation of Section III, 

p(cV V  > vk + ' 

Proof;   Any term (y) that is added to the k-th accumulator satisfies 

£ev(y) > vk  and  pad(y>y) > I  . 

By Lemma 1,  Equation {h) and the fact that    p(0,0) = » , the lemma 

follows by induction. 

Lemma _3:    If   O.  / 0 , and   N   is the number of   a. .   added to the 

accumulators, then 

vk < iev(aj < v(k<-l) - 1 ,      if   N = 1 

vk-t+l +1 < levCd^) < v(l^l)+L'06a(N-l) J      ,      if   N > 1 

(k = 0,1, ...,T1) 

where    [_ IJ    denotes the largest integer not greater tnan    t,  . 

Proof;      The inequalities for N=l are obviously the same as those satisfied 

by a single term added to the k-th accumulator.   The uppar bound 

for   N > 1   is found by considering the largest number    ({)    which 

can be added to the k-th accumulator,  i.e., 

{ = +.2z...z00...0-ßv(k+l)"1'ra      , (z = ß-1) 

ID 

» 



and observing the    fev(ciL )    during repeated additions of   5   to   a. 

If the lower bound for   N > 1   were not true,  i.e., if 

iev (a) <vk-t+f + i   , 

then, by Lemma 2, 

padCo^o*) > t   *   «k = 0   > 

which is a contradiction. 

Lemma U;    If   N < ß1"^1 , then each of the   0^      (k = 0,1, ...,Tl)    is 

exact. 

Proof;       By Lemma 3, 

levCo^) < vk+ f+ 1    . 

Combining this with Equation {h) and Lemma 2 gives 

padCo^Q^) > 0    , 

which, by the definition of   pad ,  Implies   o^    is exact. 

Loss of precision in an extended summation can result from either 

1. repeated truncations (rcundings) of the sum, or 

2. post-normalization left shift of the approximate sum. 

The post-noraalization error can be formalized as follows:   Let the 

accumulation of the floating-point sum 

where the   x.      (i = 1,2, ...,n)    are exact, be defined as 

11 



wo = o 

W.= W. 1 $x. 
~ ~- ~ 

(i = 1,2, .•. ,n) , 

The fun~tion ~ of two floating-point variables is defined as 

~(x,y) =- max[.tev(x), lev(y)} - lev(x$y) 

Thus, during post··normalization of the floating-point sum x(±)y , 

the mantissa undergoes a left shift of ~(x, y) digits. Clear}¥, if 

a carry occurs, ~(x,y) = -1 . Also, ~(x,y) > 1 only if 

l .tev (x) - lev(y) I < 1 . 

During the formation of \jr. = \jr. 
1

$x. , any truncation error 
~ ~- ~ 

already present in the low order digits of w
1

_
1 

is multiplied by 

~( \jr. l,x.) 
~- ~ 13 • 

The accumulators are summed in decreaf:ing order. Thus, the sum 

s
0 

can b e defined by 

s1f+1 = o 

sk = sk+1 $ ~ (k = ~-~-1, ... ,0) (j) 

Lemma 5: If Sk+l is exact and lev(sk+1) :S lev(~) and if Sk+l 

is un-normalized so that lev(Sk+l) = lev(~) , then 

d (s S* ) 0 .d d N :S a.l-v+l • pa k+l' k+l > , pron e '"" 

Proof: Lemma 1 and Equat ion ( 5) yield 

12 



which, with Lemma 2 and the definition of    p ,  gives 

iev(Sk+1) + Pa^Sj^S^) > v(kH-l) + I    . 

Substituting   lev(a )    for   iev(Sk+1)    and using Lemma 5, we 

obtain the desired result: 

pad(Sk+1,S*+1)  > £ - L^gß(N-l) J     • 

Suppose that,   in the process of summing the accumulators as 

iascribed by Equation  (5),    k = j    is the first    k    such that 

paä(S. ,S,)  < 0  .    As a result of Lemma 5>  the truncation (rounding) 

erro.' in adding    3 ana   a.    must be caused in one of three ways: 
j  -** j 

i)    When the operands are aligned,    pad(a.,a.)  = 0    and a carry 

occurs. 

ii)    When the operands are aligned,    pad(S    .^S    ..)  = 0    and a 

carry occurs, 

iii)    iev(Si  .)  > iev(a.)    and, when   QL    is aligned so that 

lev{(x.) = iev(SJ+1) ,    pad(a^,a*) < - ^(3^,0^) <0 . 

Lemma 6: 

£ev(S.)  > V.3 + i + 1 . 
J 

Proof:       Case i)    In the aligned position,  using Lemma 2, we find that 

iev(a.) = p(a.,a,) > vj + £    . 

Thus    iev(S )  = £ev(a,) + 1 > vj + i + 1 . 
J J 

Case ii)      ^ev(SJ+1) = P(
S

J+1*
S

J+1) > rain{p(Q:J+1,a*+1),...^(a^a*)] 

> v j + \> + I    • 

13 



Therefore   iev(S.) >vj+v+i >vj + i + l . 

Case iii)     When   a.    is aligned,    iev(S. .)  = lev(a )  > p(a ,a.) > vd + i 

Now, 

lev{S.) = ieviS.+1) + ACS^,^) 

>lev(SJ+1) > lev(a.) = vj + I  . 

Thus, 

iev(S )  > vj+ I + 1    . 

Since    lev(a. ,) < vj + I   'ogoCN"1) J  > 

lev{S.) - levia.^) > i + 1 - L'ogß(N-l) J    . 

The assumption in Lemma h (i.e.,    N < ß    ''    )    is sufficient to guarantee 

that    lev(S.) -iev(a._1) >1 ,  from which it follows that   A(S.,a., -,) <1 

Similarly,   each of the subsequent additions can undergo a post- 

normalization left shift of at most one digit.    In fact, at most one of 

the additions 

Sk = Sk+l®ak (k = J-l,j-2,...,0) 

will undergo a post-normalization left shift of one digit. 

Lemma J:    If   N < ß , the mantissa of each of the accumulators 

a.    ,Q; , ...,a     is shifted at least   t   digits during operand 

ali g run ent,.  wh er e 

K = r(t+i)/vi . (6) 

ik 



Proof;       By Lanma 6, 

lev(S, ^ >vj + f ,      (i = 0,1, ...,j) • 

By Lemma 5, 

/ev(a   ^ < v(d-i) + / + 1    ,      (i = 0,1,. ..,J)    , 

and   iev(S    i+1) - lev(a. ^ > vi - 1 > t   , (i = \,\+l, ...,j)  . 

Thus the mantissa of each of the accumulators cr .,aJ .   n,...,a„ 

is shifted at least   t    digits during operand alignment. 

Theorem 1;    If   N < ß "       ,   if the accumulator used in accumulating   S 

has at least   t+1   digits, and if no underflow or overflow occurs, 

then the absolute error in   Sn    is bounded by 

iev(S )-m-t+l 
|s-S0| <\8ß 

where 

for chopped arithmetic 

0 5 =   n    i 
for rounded arithmetic 

and   X.    is given by Equation (6). 

Proof:       Since a post-normalization left shift of at most one digit can 

occur only once while the accumulators are summed, the worst case 

occurs when it is caused by the addition of   a   .    (see Lemma 7) • 

Subsequent additions of   a. .   .,a. .   ,-,,•.•    cannot affect the computed 

value of   S-    (see Khuth's [6] discussion of problem 5* page ^98)» 

Prior to the addition of   <*   ,, a maximum of   \   truncations (roundings) 
fev(Sn)-ra-t 

can occur,  each resulting in an error of     ß u or less. 
Q.E.D. 

15 



For machines which use t-digit accumulators and chopped arithmetic, 
iev(So)-m-t+l 

the error bound is    (\-l)ß w (a stronger result!).   Note 

that, although the above theorem gives a bound on the absolute error, it 

also provides a bound on the relative error.    Specifically, if the true 

value of the sum   s    is zero, then   S. = 0 . 

1-vH"l 
Theorem 2; If   N < ß       "     and no underflow or overflow occurs, then 

s = S0(l+e)      , 

where 

lei  <\6ß2't      . 

Proof;      i)    If   S0 = 0 , then,  since total cancellation of significant 

digits cannot occur in summing the accumulators,    s = 0 . 

ii)    If   S. / 0 , then assume   s -S- = S0e  .    By Theorem 1, 

.     .   .   . lev(S0)-m-t+l 
l*-S0|  = |S0|   |e|  <\8ß 0 

lev(S )-m-l 
Since    |S0|  >ß v , 

|e|    <   Xbß2'*    . 

These theoretical res\ilts are substantiated by an experiment 

reported by D. Jordan [k],    Jordan used this technique for accumulating 

innerproducts on an IBM 360    (ß = 16, t = lU).   He chose   7) = 52 ,    1=6 

and   q  = 2 , and states: 

16 



"Bnpirical tests were run to determine the small amount of roundoff 

that might be expected from the procedure.    The tests used 1000 

dot products of 15-canponent vectors where the components were 
50        30 

randomly generated in the range    (-10   , 10    )   .    The results of 

this routine were checked against results obtained using 256 

hex-digit arithmetic chrough the multiple precision arithmetic 

package written by J. R. Ehrman of SLAC.    Of the thousand cases, 

U67 were in exact agreement,   537 had an erroneous last bit and 3 

had an erroneous penultimate bit."    [h, p. 3]. 

If the last sentence in Jordan's statement were changed to read 

"... U67 were in exact agreement,  537 had an erroneous last (hexadecimal) 

digit and 3 had an erroneous penultimate digit.", then Jordan's results 

are consistent with those of Michael Saunders at Stanford University. 

Saunders performed several experiments on an IBM 360 using   ß = l6, 

t = lU,    T\ = k3,    1=6    and   q = 2 .    He found examples where the 13-th 

hexadecimal digit of the result was in error, but none with errors in 

the 12-th digit.    Errors of this size are consistent with Theorem 2. 

V.      Additional Modifications to the Algorithm 

If one desires the final floating-point result to be correct in 

all digits, the following procedure can be used immediately after 

calculating   S    : 

1. Form   a-,ar,, ...,a       (q > 1), where   a.+a_+... + a   = S- 1' 2'      ' q      v^ -    •" 12 q       0 

and each   a.    has the property that the last    I    digits of 

its mantissa are   0  . 

2. Add    -a^-a_,...,-a     to the accumulators. 

5.      Sum the accumulators in decreasing order.    Call the result   A . 

k.      sr) 
+ ^   is "the full precision result. 

17 



In problems where   N   may get arbitrarily large (e.g., numerical 

integration), all is not lost.    One merely increments an integer every 

time a tem is added to the accuniulators and when the integer is equal 
f-\J+I 

to   ß -m(7^l) , the following procedure is executed: 

1. reset the integer to zero. 

2. for i := 0 step 1 until T\ do 

begin 

a := a.; a.   := 0; 

addtoaccumulators (a) 

end 

where the procedure addtoaccumulators forms the   a.,,...,a. 

variables, adds   q   to the integer and adds the   a. . 

(j = 1,...,q)    to the accumulators. 

5.     Resume the original algorithm. 

18 



VI.    Conclusion 

The generality of the preceding discussion tends to obscure the 

simplicity of the algorithm. For this reason, a simple illustrative 

example of this technique programmed in Fortran for the IBM 36o is included: 

REAL FUNCTION SüM(X,N) 

EQUIVALENCE (IEQ,W) 

DIMENSION X(l) 

REAL*8 R(JO),S8,DBLE 

DO K) 1=1, U5 

10        R(I)=O.ODO 

DO 20 1=1, N 

W=ABS(X(I)) 

IEXP=IEQ/5055l61*8 + 1 

C  50531648 IS 5*(2**2U) WHICH SHIFTS RIGHT 2k BITS AND 

C DIVIDES BY 5.    ABS GETS RID OF THE SIGN BIT. 

20        R(IEXP)=R(IEXP) + DBLE(X(I)) 

S8»O.0D0 

DO 50 1=1,45 
50        S8=S8 + Rikk-1) 

SUM=SNGL(S8) 

RETURN 

END 

This subroutine finds the sum of a vector of short-precis ion    (t = 6) 

numbers.    Since the 560 used has long-precision    (t = Ik)    floating-point 

hardv/are,  it is convenient to use lU digit accumulators and append 8 zero 

digits at the end of each   x,   .    Thus,    q = 1   and    1=8.    The value 

Tl = U5   was chosen to give   v = 5 .    Thus, since   ß = 16 , the short- 

precision result is guaranteed to have full-precision (chopped) 

accuracy provided   N < 16    = 16,777,216 . 

19 



This example is typical in that q is us~ small (1 or 2 ) 1 

l is usually chosen for convenience, and ~ 

accumulators can be quickly indexed and so \1 

is usually chosen so the 

is sufficiently small. 

The alg'Jrithm is currently used in several innerproduct routines 

(see Malcolm [3] for desc~iptions of these routines, including running 

ti~mes). Since efficiency is satisfactory, it may well be feasible to 

implement this technique through a microprograzn so that the programmer 

c3.n speci fy by a certain operation code that a summation is to be 

perfonned WJ.tll a set of these accumulators rather than with a single 

a cumulator . 
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